SGS¶
A função bcb.sgs.get()
obtem os dados do webservice do Banco Central ,
interface json do serviço BCData/SGS -
Sistema Gerenciador de Séries Temporais (SGS).
Exemplos¶
In [1]: from bcb import sgs
In [2]: import matplotlib.pyplot as plt
In [3]: import matplotlib as mpl
In [4]: mpl.style.use('bmh')
In [5]: df = sgs.get({'IPCA': 433}, start='2002-02-01')
In [6]: df.index = df.index.to_period('M')
In [7]: df.head()
Out[7]:
IPCA
Date
2002-02 0.36
2002-03 0.60
2002-04 0.80
2002-05 0.21
2002-06 0.42
In [8]: dfr = df.rolling(12)
In [9]: i12 = dfr.apply(lambda x: (1 + x/100).prod() - 1).dropna() * 100
In [10]: i12.head()
Out[10]:
IPCA
Date
2003-01 14.467041
2003-02 15.847124
2003-03 16.572608
2003-04 16.769209
2003-05 17.235307
In [11]: i12.plot(figsize=(12,6))
Out[11]: <Axes: xlabel='Date'>
In [12]: plt.title('Fonte: https://dadosabertos.bcb.gov.br', fontsize=10)
Out[12]: Text(0.5, 1.0, 'Fonte: https://dadosabertos.bcb.gov.br')
In [13]: plt.suptitle('IPCA acumulado 12 meses - Janela Móvel', fontsize=18)
Out[13]: Text(0.5, 0.98, 'IPCA acumulado 12 meses - Janela Móvel')
In [14]: plt.xlabel('Data')
Out[14]: Text(0.5, 0, 'Data')
In [15]: plt.ylabel('%')
Out[15]: Text(0, 0.5, '%')
In [16]: plt.legend().set_visible(False)

Dados de Inadimplência de Operações de Crédito¶
In [17]: from bcb.sgs.regional_economy import get_non_performing_loans
In [18]: from bcb.utils import BRAZILIAN_REGIONS, BRAZILIAN_STATES
In [19]: import pandas as pd
In [20]: get_non_performing_loans(["RR"], last=10, mode="all")
Out[20]:
RR
Date
2024-03-01 3.96
2024-04-01 3.94
2024-05-01 4.22
2024-06-01 4.15
2024-07-01 4.07
2024-08-01 3.77
2024-09-01 3.85
2024-10-01 3.84
2024-11-01 3.78
2024-12-01 3.62
In [21]: northeast_states = BRAZILIAN_REGIONS["NE"]
In [22]: get_non_performing_loans(northeast_states, last=5, mode="pj")
Out[22]:
AL BA CE MA PB PE PI RN SE
Date
2024-08-01 2.77 3.06 2.70 4.35 3.38 3.18 2.18 3.50 3.45
2024-09-01 2.69 3.13 2.67 4.41 3.46 3.15 2.26 3.44 3.55
2024-10-01 2.59 3.09 2.77 4.59 3.53 3.03 2.33 3.65 3.61
2024-11-01 2.55 3.40 2.73 4.65 3.54 2.91 2.41 3.60 4.02
2024-12-01 2.15 2.55 2.57 4.56 3.30 2.76 2.30 3.31 3.90
In [23]: get_non_performing_loans(BRAZILIAN_STATES, mode="PF", start="2024-01-01")
Out[23]:
AC AP AM PA RO ... RJ SP PR RS SC
Date ...
2024-01-01 3.49 4.09 5.40 4.16 2.76 ... 5.33 3.45 2.76 2.48 2.85
2024-02-01 3.48 4.05 5.25 4.15 2.78 ... 5.25 3.43 2.75 2.51 2.84
2024-03-01 3.43 4.01 5.18 4.09 2.81 ... 5.17 3.36 2.74 2.53 2.81
2024-04-01 3.46 4.10 5.15 4.09 2.85 ... 5.13 3.41 2.75 2.53 2.81
2024-05-01 3.54 4.22 5.26 4.15 2.99 ... 5.14 3.46 2.83 2.60 2.87
2024-06-01 3.50 4.11 5.14 4.09 3.07 ... 5.04 3.40 2.76 2.61 2.79
2024-07-01 3.49 4.13 5.14 4.14 3.16 ... 5.02 3.43 2.87 2.61 2.82
2024-08-01 3.41 4.03 5.05 4.13 3.23 ... 4.97 3.42 3.02 2.58 2.81
2024-09-01 3.55 4.06 4.99 4.16 3.24 ... 4.90 3.39 3.01 2.54 2.79
2024-10-01 3.55 3.98 4.86 4.21 3.26 ... 4.84 3.35 2.97 2.49 2.74
2024-11-01 3.49 3.97 4.74 4.23 3.31 ... 4.80 3.32 2.94 2.41 2.70
2024-12-01 3.52 4.05 4.63 4.21 3.35 ... 4.70 3.28 2.88 2.29 2.65
[12 rows x 27 columns]